CAD MEN 虎門科技 | Ansys 精英合作夥伴

4/7 (四) 14:00-14:40	Ansys CFD 進階應用_TurboWorkflow 新技術線上研討會	李奕璋
4/7 (四) 15:00-15:40	Ansys Rocky 新技術線上研討會 (Ansys Fluent、Motion & OptiSLang 耦合應用技術)	林健文
4/7 (四) 16:00-16:40	Ansys GRANTA 碳足跡應用與產業成功案例分享- 新技術線上研討會	李易軒
NVIDIA QU ^{I時即刻加速改變}	ADRO RTX 4000	

透過 GPU 加速光線追蹤、深度學習和進階著色,滿足現今最苛的專業工作流程需求。採用 NVIDIA Turing™ 架構和 NVIDIA RTX™ 平台的 NVIDIA[®] Quadro RTX™ 4000,提供單插槽 PCI-e 尺寸同級最佳 的效能與功能。加速獲得深入分析和解決方案的時間,以前所未有的方式設計與創造。

立即購買

最佳CAE運算設備供應商 -請洽虎門科技業務團隊-

NSYS / ROCKY

Using Rocky-DEM to Model Non-Spherical Particle Coupling with ANSYS Solutions

虎門科技 CAE 事業部 技術副理 林健文 2022/04/07

Overview

- 1. Rocky-DEM introduction(Discrete element modeling)
- 2. Physical Models
- 3. How does Rocky fit into Ansys Portfolio?
- 4. Success Story

What is Ansys Rocky?

• Ansys Rocky is a high-fidelity particle simulation software, that quickly and accurately simulates the particle flow behavior

Ł

Wood chips (biomass handling)

ROCKY

Wet and sticky ore (chute transfer in mining)

Tablets (pharmaceutical tablet coating)

What is DEM (Discrete Element Method)?

Simulating Particle Dynamics in Time

Example: Solid Particle loading and discharge – Rotary Valve

DEM Calculation Loop

* The Euler equations of motion are not shown in the diagram for simplicity.

Continuum vs. Discrete methods

- Continuum methods Computational Fluid Dynamics (CFD) and Finite Element Analysis (FEA)
 - Granular material is treated as a continuous substance, individual particles are ignored
 - Knudsen number $Kn \ll 1$ (length scale \gg particle diameter)
 - Constitutive law needed (relationship between applied stress to strain and history dependence)
 - Meshing of the flow domain is required and conservation laws (mass, momentum, energy) are applied at each cell
 - Resulting equations are solved either using a finite difference, finite volume or finite element method

Rocky Enables Capturing Particle Physics

- Contact
- Collision
- Friction
- Adhesion
- Electric charge
- Wear

. . . .

- Breakup
- Contact heat transfer

Example: Tumbling of dry(left) and cohesive particles (right)

ACCURATE, with realistic physical representation

Default particle shapes in Rocky:

Rocky shape examples:

ACCURATE, with realistic physical representation

ACCURATE, with realistic physical representation

Scan any shape and import it into Rocky:

1. A real-world particle is scanned on a 3D scanner

3. The .stl file is imported into Rocky as a custom particle shape

4. A Rocky simulation is conducted using the new custom particle shape

Real Physical Representation

Flexible fiber: accurate stress-strain response

Scalability (and memory) for large particle numbers on multi-GPU

1. Which GPU cards are recommended for use with Rocky?

Rocky has been tested and verified with all of the following NVIDIA GPU cards:

Gaming: <u>RTX 2080</u>, <u>RTX 2080 Ti</u>, <u>Titan RTX</u>, <u>RTX 3080</u>, and <u>RTX 3090</u> PROS: Fast when using only spherical particles, inexpensive, can be installed on individual workstations, has video output **CONS:** Slow when using shaped particles

Workstation: Titan V, Quadro GP100, and Quadro GV100

PROS: Fast when using spherical and/or shaped particles, can be installed on individual workstations, has video output

CONS: More expensive

Server: Tesla P100, Tesla V100, Tesla A100, and Tesla A30

PROS: Fast when using spherical and/or shaped particles

CONS: More expensive, must be installed in a server enclosure, no video output

For best results, use only one of the above recommended GPU cards during Rocky processing.

Physical Models

Particle Breakage

Instant Fragmentation

Discrete Grain Breakage

Shape independent

"Meshed" particle model

Boundary Surface Wear

Boundary Surface Wear

Complex Motions: 6 Degrees of Freedom (DOF)

Hinged flop gate free to rotate about the Z axis. Displacement and wear rate also captured. Wheel with six degrees of freedom motion. Wheel mass is m=10 kg, moments of inertia are lxx=1.0, lyy=0.1, lzz=0.1 kg*m²

Vear Prediction - High Pressure Grinding Roll

Simulation Goal:

Predict wear on the deflector and find the particle size distribution of material after grinding process

Rocky DEM highlights:

- Wear model that enables geometry deformation
- Breakage models that preserve mass and volume

Simulation of wet and sticky material flow

Existing Design

New Design

Complex Motions

Complete Customization and Extension

Complete Customization and Extension

Туре	Name	Description	Version	Links
Adhesion	[NEW] Velocity-	Enables you to use a parametric adhesive force model that	1.0.0	Windows,
Model	Dependent	takes into account the particle's impact velocity. This model		Linux
	Adhesive Force	is best suited for spherical particles. Application examples		
		include snow accretion. The Source code is not provided for		
		this item.		
Boundary	Region Outlet	Enables you to define a custom cube region as an outlet for	1.0.2	Windows,
Condition		particles; any particles entering this region will be removed		Linux,
		from the simulation, similarly to what happens when a		Source
		particle crosses the limits of the simulation domain.		
		Application examples include blast furnaces.		
	Boundary Outlet	Enables you to define an imported geometry component	1.0.0	Windows,
		and/or default conveyor as an outlet for particles. This		Linux,
		module then removes from the simulation any particle that		Source
		becomes in contact with that geometry. Application		
		examples include blast furnaces.		
Breakage	[NEW] Overlap-	This module enables you to use a custom, instantaneous	1.0.1	Windows,
Model	Based	breakage model and a custom fragments size distribution		Linux,
	Breakage Model	model to account for the physical effects of compression		Source
		upon particle breakage, where the contact overlap is used		
		as a measurement of particle deformation. Application		
		examples include jaw, gyratory, or roll crushers.		
CFD	Parametric	Enables you to use a parametric version of the Ranz &	1.0.1	Windows,
Coupling	Ranz &	Marshall Convective Heat Transfer Law included by default		Linux,
	Marshall Law	in Rocky for interactions between spherical particles and		Source
		fluids when CFD Coupling is enabled. This model is made		
		parametric by adding two free parameters to the calculation		
		of the Nusselt number.		
	[NEW] Dhole,	Enables you to use a power-law drag correlation for your	1.0.0	Windows,
	Chhabra &	CFD Coupling simulations that is specifically designed to		Linux,
	Eswaran Drag	model non-Newtonian fluids that obey the Ostwald-de		Source
	Law	Waele (power-law) relationship. This module is designed to		
		work with Rocky's 1-Way Constant, 1-Way Fluent Steady		
		State, or 2-Way Fluent (unresolved) coupling methods. This		
		module is a drag factor correction that accounts for the fluid		
		non-newtonian properties in the drag correlation, it does not		
		account for the particle shape nor the local volume fraction.		
		Therefore it is suited for espherical particles in dilute flows.		

Contact	Leeds Contact	Enables you to use the Leeds Contact Model for both the	1.0.1	Windows,
Model	Model	Normal Force and Adhesive Force used in the project.		Linux,
		Application examples include cohesive frictional powders.		Source
	Stress-Based	Enables you to use the Stress-Based Multi-Contact Model	1.0.0	Windows,
	Multi-Contact	proposed by K. Giannis et al. for the Normal Forces used in		Linux,
	Normal Force	the project.		Source
	Nonlinear	Enables you to use the Non-Linear Hysteresis Model for the	1.0.1	Windows,
	Hysteretic	Normal Forces used in the project. Application examples		Linux,
	Normal Force	include elasto-plastic materials.		Source
Data	[NEW] Normal	This module re-implements and then splits into its normal	1.0.1	Windows,
Gathering	and Tangential	and tangential components the same Particle Curve		Linux,
	Energy	calculations you get in Rocky when the Energy Dissipation		Source
	Dissipation	option is enabled on the Inter-group Collision Statistics		
		module; and similar Particle Property calculations you get in		
		Rocky when the Power option is enabled on the Inter-		
		particle Collision Statistics module, only instead of power, it		
	ļ	calculates energy.		l
External	Magnetic Force	Enables you to use an imported magnetic field to define an	1.0.0	Windows,
Force		additional body force acting on particles. Application		Linux,
		example includes magnetic separators.		Source
	Spring-Dashpot	Applies a spring-dashpot force to particles. The force is	1.0.0	Windows,
	Body Force	proportional to the distance from a given point and to the		Linux,
		particle's translational velocity. Application examples include		Source
		measuring forces in single-particle validation experiments.		
	[NEW] 1-Way	This module enables you to couple 1-way with Rocky a fluid	1.0.0	Windows,
	CFD Field	velocity field that has been imported into Rocky as a Point		Linux,
	Coupling	Cloud. It can be used as an alternative to the 1-Way Fluent		Source
		Steady State coupling method included with Rocky, as it		
		enables you make use of the fluid results from various		
		external CFD solvers. This module also re-implements the		
		Schiller & Naumann Drag Law that comes by default with		
		Rocky, and is therefore best suited for spherical particles. It		
		can be used as an example of API: Solver usage.		
	Electrostatic	Enables you to add attractive or repulsive electrostatic	1.0.1	Windows,
	Force	forces between each particle-particle and particle-boundary		Linux,
		interaction that occurs during the simulation. Application		Source
		examples include powder handling units, electrostatic		
		separators, and additive manufacturing processes.		
	Magnetic Force	This module adds a magnetic force resulting from the	1.0.2	Windows,
	on Ferrous	interaction of a ferromagnetic particle and a magnetic		Linux,
	Material	induction vector field, the latter of which is imported as a		Source
		point cloud. Application example includes a cross-belt		
		magnetic separator.		

... and the Result is a Custom, Accurate Multiphysics Engineering Tool

Accurate Vacuum Cleaner Model

How does Rocky fit into Ansys Portfolio?

How does Rocky fit into Ansys Portfolio?

Response Surface

3

Response Surface Design of Experiments Full combination of parametric Geometry, Design Optimization, Fluid Flow, Particles and Mechanical Analysis

Example - Ansys CFD Coupling (Fluent)

Powerful CFD-DEM simulation software for granular-fluid systems (not exhaustive)

Ansys CFD Coupling (Fluent)

Both one-way and two-way analyses are possible.

One-way coupling example: waste separator

Two-way coupling example: fluidized bed

Expanded Fluent Coupling

Fluidized Bed Drying

Particle Moisture Content

2-way CFD Coupling (Fluent)

Strategy 1: Single phase + porous media

- Special implementation for single-fluid flows
- 3x times faster than multiphase implementation

2-way CFD Coupling (Fluent)

Strategy 2: Full Eulerian multiphase

- General case scenario
- Solids + several "fluids"

Example: Rotating drum

2-way CFD Coupling (Fluent)

Strategy 3: Semi-resolved coupling

- Particle-grid size ratio >> 1
- Multi-phase flow
- Solid volume fraction correction

Ansys Mechanical Coupling

- Stresses and vibration analyses of a screen in ANSYS
- ► Inputs come from Rocky simulation

Ansys Mechanical Coupling

Bucket excavator: Solid induced loads captured accurately

Structure Analysis of a Transfer Chute

• ANSYS Mechanical Coupling (FEA)

ANSYS SpaceClaim Direct Modeler

Electric Particles – Electromagnetic Coupling

Magnetic Fields are imported from Ansys Maxwell using Point Clouds

Electric Particles – Electromagnetic Coupling

Magnetic Field is loaded using a Point Cloud

Magnetic Field force is added to particles as a custom Body Force

 $\vec{F} = q\vec{V} \times \vec{H}$

q: Particle charge \vec{V} : Particle Velocity \vec{H} : Magnetic Field

Electric Particles – Electrostatic Force

Coulomb Law

$$F = \frac{q_1 q_2}{4\pi \varepsilon r^2}$$

q = particle charge

- ε = absolute permittivity
- r = distance between the two charges

Electric Particles – Electrostatic Force

Adhesive Force **Electrostatics Force**

Electric Particles – Electrostatic Precipitator

Electric Particles – Tribocharging

Empirical Formulas

$$q = q_0 e^{-\alpha t} + q_s (1 - e^{-\alpha t})$$

- *q* = final particle charge
- q_0 = initial particle charge
- q_s = saturation particle charge
- α = generation coefficient
- t = time

Ansys Motion 2-way Coupling Complex Nested & Chained Motions

Ansys Motion 2-way Coupling

Actuators Defined Motion

Rocky DEM + Ansys Motion Stresses and Flexible Geometry

Stress and Deformation analysis

Closed Chain Linkage

* Stress and Deformation computed by Ansys **Motion**

Design Optimization with Ansys optiSLang

Seed Treater Design Optimization

Seed treating : Coating of seeds with layer of active ingredients and excipients to protect seed during early germination.

Software toolbox

Parametric CAD using

SpaceClaim scripting.

Geometry discretization

Ansys

SpaceClaim

BAYER E R

Courtesy of Bayer AG - Dr. Rakulan Sivanesapillai, Damien Brewer and Michael Ostendorf - WOST 2021

Design Optimization with Ansys optiSLang

Courtesy of Bayer AG - Dr. Rakulan Sivanesapillai, Damien Brewer and Michael Ostendorf - WOST 2021

ANSYS and Rocky generate savings for VALE

Challenge

- ➤ To improve the efficiency of the equipment
- To reduce the need to clean plant material out of the hoppers' screens
- ▼ To increase productivity

Solution

- ANSYS and Rocky coupling used to simulate the flow of ore and understand its impact upon existing plant equipment
- ✓ A more efficient system of rotating disks was developed
- Transmission system was redesigned and support structures were adapted accordingly

Benefits

- Economic returns of over US\$ 100 million in 3 months
- ✓ Time spent on the development reduced by 70%
- ✔ Production increased by 11.4%

BOMAG uses Rocky to improve Asphalt Plant Equipment

Challenge

- ✓ To understand the material behavior inside an Asphalt Plant
- ▼ To test different designs for equipment modification
- ▼ To increase productivity

Solution

- Rocky DEM analyses allowed a better understanding of the behavior of the particulate material
- Qualitative and quantitative post-processing tools led to a detailed evaluation of the particulate flux considering different designs of the equipment

Benefits

- Simulations considering different designs for the fins in the mixing zone of the Multi Paddle Pug Mill mixer were carried out
- The results enabled an evaluation of the residence time of the particles in the equipment, a key parameter for the process

Codelco Chile

Thank you for your attention.

CAD MEN 虎門科技 | Ansys 精英合作夥伴

4/7 (四) 14:00-14:40	Ansys CFD 進階應用_TurboWorkflow 新技術線上研討會	李奕璋
4/7 (四) 15:00-15:40	Ansys Rocky 新技術線上研討會 (Ansys Fluent、Motion & OptiSLang 耦合應用技術)	林健文
4/7 (四) 16:00-16:40	Ansys GRANTA 碳足跡應用與產業成功案例分享- 新技術線上研討會	李易軒
NVIDIA QU ^{I時即刻加速改變}	ADRO RTX 4000	

透過 GPU 加速光線追蹤、深度學習和進階著色,滿足現今最苛的專業工作流程需求。採用 NVIDIA Turing™ 架構和 NVIDIA RTX™ 平台的 NVIDIA[®] Quadro RTX™ 4000,提供單插槽 PCI-e 尺寸同級最佳 的效能與功能。加速獲得深入分析和解決方案的時間,以前所未有的方式設計與創造。

立即購買

最佳CAE運算設備供應商 -請洽虎門科技業務團隊-